The Four Canonical TPR Subunits of Human APC/C Form Related Homo-Dimeric Structures and Stack in Parallel to Form a TPR Suprahelix☆
نویسندگان
چکیده
The anaphase-promoting complex or cyclosome (APC/C) is a large E3 RING-cullin ubiquitin ligase composed of between 14 and 15 individual proteins. A striking feature of the APC/C is that only four proteins are involved in directly recognizing target proteins and catalyzing the assembly of a polyubiquitin chain. All other subunits, which account for >80% of the mass of the APC/C, provide scaffolding functions. A major proportion of these scaffolding subunits are structurally related. In metazoans, there are four canonical tetratricopeptide repeat (TPR) proteins that form homo-dimers (Apc3/Cdc27, Apc6/Cdc16, Apc7 and Apc8/Cdc23). Here, we describe the crystal structure of the N-terminal homo-dimerization domain of Schizosaccharomyces pombe Cdc23 (Cdc23(Nterm)). Cdc23(Nterm) is composed of seven contiguous TPR motifs that self-associate through a related mechanism to those of Cdc16 and Cdc27. Using the Cdc23(Nterm) structure, we generated a model of full-length Cdc23. The resultant "V"-shaped molecule docks into the Cdc23-assigned density of the human APC/C structure determined using negative stain electron microscopy (EM). Based on sequence conservation, we propose that Apc7 forms a homo-dimeric structure equivalent to those of Cdc16, Cdc23 and Cdc27. The model is consistent with the Apc7-assigned density of the human APC/C EM structure. The four canonical homo-dimeric TPR proteins of human APC/C stack in parallel on one side of the complex. Remarkably, the uniform relative packing of neighboring TPR proteins generates a novel left-handed suprahelical TPR assembly. This finding has implications for understanding the assembly of other TPR-containing multimeric complexes.
منابع مشابه
TPR Subunits of the Anaphase-Promoting Complex Mediate Binding to the Activator Protein CDH1
BACKGROUND Chromosome segregation and mitotic exit depend on activation of the anaphase-promoting complex (APC) by the substrate adaptor proteins CDC20 and CDH1. The APC is a ubiquitin ligase composed of at least 11 subunits. The interaction of APC2 and APC11 with E2 enzymes is sufficient for ubiquitination reactions, but the functions of most other subunits are unknown. RESULTS We have bioch...
متن کاملStructurally related TPR subunits contribute differently to the function of the anaphase-promoting complex in Drosophila melanogaster.
The anaphase-promoting complex/cyclosome or APC/C is a key regulator of chromosome segregation and mitotic exit in eukaryotes. It contains at least 11 subunits, most of which are evolutionarily conserved. The most abundant constituents of the vertebrate APC/C are the four structurally related tetratrico-peptide repeat (TPR) subunits, the functions of which are not yet precisely understood. Orth...
متن کاملStructural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase composed of approximately 13 distinct subunits required for progression through meiosis, mitosis, and the G1 phase of the cell cycle. Despite its central role in these processes, information concerning its composition and structure is limited. Here, we determined the structure of yeast APC/C by cryo-electron microscopy (...
متن کاملRecombinant expression, reconstitution and structure of human anaphase-promoting complex (APC/C).
Mechanistic and structural studies of large multi-subunit assemblies are greatly facilitated by their reconstitution in heterologous recombinant systems. In the present paper, we describe the generation of recombinant human APC/C (anaphase-promoting complex/cyclosome), an E3 ubiquitin ligase that regulates cell-cycle progression. Human APC/C is composed of 14 distinct proteins that assemble int...
متن کاملCrystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand.
Tetratricopeptide repeats (TPRs) are protein domains that mediate key protein-protein interactions in cells. Several TPR domains bind the C-termini of the chaperones heat shock protein (Hsp)90 and/or Hsp70, and exchange of such binding partners is key for the heat shock response. We have previously described the design of a TPR protein that binds tightly and specifically to the C-terminus of Hs...
متن کامل